年齡問(wèn)題的三個(gè)基本特征
①兩個(gè)人的年齡差是不變的;
?、趦蓚€(gè)人的年齡是同時(shí)增加或者同時(shí)減少的;
?、蹆蓚€(gè)人的年齡的倍數(shù)是發(fā)生變化的。
植樹(shù)問(wèn)題
基本類(lèi)型:
在直線(xiàn)或者不封閉的曲線(xiàn)上植樹(shù),兩端都植樹(shù)在直線(xiàn)或者不封閉的曲線(xiàn)上植樹(shù),兩端都不植樹(shù)在直線(xiàn)或者不封閉的曲線(xiàn)上植樹(shù),只有一端植樹(shù)。
雞兔同籠問(wèn)題
基本概念:
雞兔同籠問(wèn)題又稱(chēng)為置換問(wèn)題、假設(shè)問(wèn)題,就是把假設(shè)錯(cuò)的那部分置換出來(lái)。
基本思路:
?、偌僭O(shè),即假設(shè)某種現(xiàn)象存在(甲和乙一樣或者乙和甲一樣):
?、诩僭O(shè)后,發(fā)生了和題目條件不同的差,找出這個(gè)差是多少;
③每個(gè)事物造成的差是固定的,從而找出出現(xiàn)這個(gè)差的原因;
④再根據(jù)這兩個(gè)差作適當(dāng)?shù)恼{(diào)整,消去出現(xiàn)的差。
基本公式:
?、侔阉须u假設(shè)成兔子:雞數(shù)=(兔腳數(shù)×總頭數(shù)-總腳數(shù))÷(兔腳數(shù)-雞腳數(shù))
?、诎阉型米蛹僭O(shè)成雞:兔數(shù)=(總腳數(shù)一雞腳數(shù)×總頭數(shù))÷(兔腳數(shù)一雞腳數(shù))
關(guān)鍵問(wèn)題:找出總量的差與單位量的差。
盈虧問(wèn)題
基本概念:
一定量的對(duì)象,按照某種標(biāo)準(zhǔn)分組,產(chǎn)生一種結(jié)果:按照另一種標(biāo)準(zhǔn)分組,又產(chǎn)生一種結(jié)果,由于分組的標(biāo)準(zhǔn)不同,造成結(jié)果的差異,由它們的關(guān)系求對(duì)象分組的組數(shù)或?qū)ο蟮目偭俊?/p>
基本思路:
先將兩種分配方案進(jìn)行比較,分析由于標(biāo)準(zhǔn)的差異造成結(jié)果的變化,根據(jù)這個(gè)關(guān)系求出參加分配的總份數(shù),然后根據(jù)題意求出對(duì)象的總量。
基本題型:
①一次有余數(shù),另一次不足;
基本公式:總份數(shù)=(余數(shù)+不足數(shù))÷兩次每份數(shù)的差
②當(dāng)兩次都有余數(shù);
基本公式:總份數(shù)=(較大余數(shù)一較小余數(shù))÷兩次每份數(shù)的差
③當(dāng)兩次都不足;
基本公式:總份數(shù)=(較大不足數(shù)一較小不足數(shù))÷兩次每份數(shù)的差
基本特點(diǎn):
對(duì)象總量和總的組數(shù)是不變的。
關(guān)鍵問(wèn)題:
確定對(duì)象總量和總的組數(shù)。
牛吃草問(wèn)題
基本思路:
假設(shè)每頭牛吃草的速度為“1”份,根據(jù)兩次不同的吃法,求出其中的總草量的差;再找出造成這種差異的原因,即可確定草的生長(zhǎng)速度和總草量。
基本特點(diǎn):
原草量和新草生長(zhǎng)速度是不變的。
關(guān)鍵問(wèn)題:
確定兩個(gè)不變的量。
基本公式:
生長(zhǎng)量=(較長(zhǎng)時(shí)間×長(zhǎng)時(shí)間牛頭數(shù)-較短時(shí)間×短時(shí)間牛頭數(shù))÷(長(zhǎng)時(shí)間-短時(shí)間);
總草量=較長(zhǎng)時(shí)間×長(zhǎng)時(shí)間牛頭數(shù)-較長(zhǎng)時(shí)間×生長(zhǎng)量。
周期循環(huán)與數(shù)表規(guī)律
周期現(xiàn)象:
事物在運(yùn)動(dòng)變化的過(guò)程中,某些特征有規(guī)律循環(huán)出現(xiàn)。
周期:
我們把連續(xù)兩次出現(xiàn)所經(jīng)過(guò)的時(shí)間叫周期。
關(guān)鍵問(wèn)題:
確定循環(huán)周期。
閏年:一年有366天;
①年份能被4整除;
?、谌绻攴菽鼙?00整除,則年份必須能被400整除。
平年:一年有365天。
?、倌攴莶荒鼙?整除;
?、谌绻攴菽鼙?00整除,但不能被400整除。
平均數(shù)問(wèn)題
平均數(shù)
基本公式:
?、倨骄鶖?shù)=總數(shù)量÷總份數(shù)
總數(shù)量=平均數(shù)×總份數(shù)
總份數(shù)=總數(shù)量÷平均數(shù)
②平均數(shù)=基準(zhǔn)數(shù)+每一個(gè)數(shù)與基準(zhǔn)數(shù)差的和÷總份數(shù)
基本算法:
①求出總數(shù)量以及總份數(shù),利用基本公式①進(jìn)行計(jì)算;
?、诨鶞?zhǔn)數(shù)法:根據(jù)給出的數(shù)之間的關(guān)系,確定一個(gè)基準(zhǔn)數(shù);一般選與所有數(shù)比較接近的數(shù)或者中間數(shù)為基準(zhǔn)數(shù);以基準(zhǔn)數(shù)為標(biāo)準(zhǔn),求所有給出數(shù)與基準(zhǔn)數(shù)的差;再求出所有差的和;再求出這些差的平均數(shù);較后求這個(gè)差的平均數(shù)和基準(zhǔn)數(shù)的和,就是所求的平均數(shù),具體關(guān)系見(jiàn)基本公式②。
抽屜原理
抽屜原則一:
如果把(n+1)個(gè)物體放在n個(gè)抽屜里,那么必有一個(gè)抽屜中至少放有2個(gè)物體。
例:把4個(gè)物體放在3個(gè)抽屜里,也就是把4分解成三個(gè)整數(shù)的和,那么就有以下四種情況:
①4=4+0+0②4=3+1+0
?、?=2+2+0④4=2+1+1
觀察上面四種放物體的方式,我們會(huì)發(fā)現(xiàn)一個(gè)共同特點(diǎn):總有那么一個(gè)抽屜里有2個(gè)或多于2個(gè)物體,也就是說(shuō)必有一個(gè)抽屜中至少放有2個(gè)物體。
抽屜原則二:
如果把n個(gè)物體放在m個(gè)抽屜里,其中n>m,那么必有一個(gè)抽屜至少有:
?、賙=[n/m]+1個(gè)物體:當(dāng)n不能被m整除時(shí)。
?、趉=n/m個(gè)物體:當(dāng)n能被m整除時(shí)。
理解知識(shí)點(diǎn):
[X]表示不超過(guò)X的較大整數(shù)。
例:[4.351]=4;[0.321]=0;[2.9999]=2。
關(guān)鍵問(wèn)題:
構(gòu)造物體和抽屜。也就是找到代表物體和抽屜的量,而后依據(jù)抽屜原則進(jìn)行運(yùn)算。
奧數(shù)知識(shí)點(diǎn)(定義新運(yùn)算)
奧數(shù)知識(shí)點(diǎn)(數(shù)列求和)
等差數(shù)列:
在一列數(shù)中,任意相鄰兩個(gè)數(shù)的差是一定的,這樣的一列數(shù),就叫做等差數(shù)列。
基本概念:
首項(xiàng):等差數(shù)列的較好個(gè)數(shù),一般用a1表示;
項(xiàng)數(shù):等差數(shù)列的所有數(shù)的個(gè)數(shù),一般用n表示;
公差:數(shù)列中任意相鄰兩個(gè)數(shù)的差,一般用d表示;
通項(xiàng):表示數(shù)列中每一個(gè)數(shù)的公式,一般用an表示;
數(shù)列的和:這一數(shù)列全部數(shù)字的和,一般用Sn表示。
基本思路:
等差數(shù)列中涉及五個(gè)量:a1,an,d,n,sn,,通項(xiàng)公式中涉及四個(gè)量,如果己知其中三個(gè),就可求出第四個(gè);求和公式中涉及四個(gè)量,如果己知其中三個(gè),就可以求這第四個(gè)。
基本公式:
通項(xiàng)公式:an=a1+(n-1)d;
通項(xiàng)=首項(xiàng)+(項(xiàng)數(shù)一1)×公差;
數(shù)列和公式:sn,=(a1+an)×n÷2;
數(shù)列和=(首項(xiàng)+末項(xiàng))×項(xiàng)數(shù)÷2;
項(xiàng)數(shù)公式:n=(an+a1)÷d+1;
項(xiàng)數(shù)=(末項(xiàng)-首項(xiàng))÷公差+1;
公差公式:d=(an-a1))÷(n-1);
公差=(末項(xiàng)-首項(xiàng))÷(項(xiàng)數(shù)-1)。
關(guān)鍵問(wèn)題:
確定已知量和未知量,確定使用的公式。
加法乘法原理和幾何計(jì)數(shù)
加法原理:
如果完成一件任務(wù)有n類(lèi)方法,在較好類(lèi)方法中有m1種不同方法,在第二類(lèi)方法中有m2種不同方法……,在第n類(lèi)方法中有mn種不同方法,那么完成這件任務(wù)共有:m1+m2.......+mn種不同的方法。
關(guān)鍵問(wèn)題:
確定工作的分類(lèi)方法。
基本特征:
每一種方法都可完成任務(wù)。
乘法原理:
如果完成一件任務(wù)需要分成n個(gè)步驟進(jìn)行,做步有m1種方法,不管步用哪一種方法,第2步總有m2種方法……不管前面n-1步用哪種方法,第n步總有mn種方法,那么完成這件任務(wù)共有:m1×m2.......×mn種不同的方法。
關(guān)鍵問(wèn)題:
確定工作的完成步驟。
基本特征:
每一步只能完成任務(wù)的一部分。
直線(xiàn):
一點(diǎn)在直線(xiàn)或空間沿一定方向或相反方向運(yùn)動(dòng),形成的軌跡。
直線(xiàn)特點(diǎn):
沒(méi)有端點(diǎn),沒(méi)有長(zhǎng)度。
線(xiàn)段:
直線(xiàn)上任意兩點(diǎn)間的距離,這兩點(diǎn)叫端點(diǎn)。
線(xiàn)段特點(diǎn):
有兩個(gè)端點(diǎn),有長(zhǎng)度。
射線(xiàn):
把直線(xiàn)的一端無(wú)限延長(zhǎng)。
射線(xiàn)特點(diǎn):
只有一個(gè)端點(diǎn);沒(méi)有長(zhǎng)度。
?、贁?shù)線(xiàn)段規(guī)律:總數(shù)=1+2+3+…+(點(diǎn)數(shù)一1);
?、跀?shù)角規(guī)律=1+2+3+…+(射線(xiàn)數(shù)一1);
?、蹟?shù)長(zhǎng)方形規(guī)律:個(gè)數(shù)=長(zhǎng)的線(xiàn)段數(shù)×寬的線(xiàn)段數(shù);
?、軘?shù)長(zhǎng)方形規(guī)律:個(gè)數(shù)=1×1+2×2+3×3+…+行數(shù)×列數(shù)。
質(zhì)數(shù)與合數(shù)
質(zhì)數(shù):
一個(gè)數(shù)除了1和它本身之外,沒(méi)有別的約數(shù),這個(gè)數(shù)叫做質(zhì)數(shù),也叫做素?cái)?shù)。
合數(shù):
一個(gè)數(shù)除了1和它本身之外,還有別的約數(shù),這個(gè)數(shù)叫做合數(shù)。
質(zhì)因數(shù):
如果某個(gè)質(zhì)數(shù)是某個(gè)數(shù)的約數(shù),那么這個(gè)質(zhì)數(shù)叫做這個(gè)數(shù)的質(zhì)因數(shù)。
分解質(zhì)因數(shù):
把一個(gè)數(shù)用質(zhì)數(shù)相乘的形式表示出來(lái),叫做分解質(zhì)因數(shù)。通常用短除法分解質(zhì)因數(shù)。任何一個(gè)合數(shù)分解質(zhì)因數(shù)的結(jié)果是的。
分解質(zhì)因數(shù)的標(biāo)準(zhǔn)表示形式:
N=,其中a1、a2、a3……an都是合數(shù)N的質(zhì)因數(shù),且a1<a2<a3<……<an。
求約數(shù)個(gè)數(shù)的公式:
P=(r1+1)×(r2+1)×(r3+1)×……×(rn+1)。
互質(zhì)數(shù):
如果兩個(gè)數(shù)的較大公約數(shù)是1,這兩個(gè)數(shù)叫做互質(zhì)數(shù)。
微信選課
享更多優(yōu)質(zhì)好課!